- **20.** Let F be a field of characteristic 2, and let K be an extension of F of degree 2.
 - (a) Prove that K has the form $F(\alpha)$, where α is the root of an irreducible polynomial over F of the form $x^2 + x + a$, and that the other root of this equation is $\alpha + 1$.
 - (b) Is it true that there is an automorphism of K sending $\alpha \leftrightarrow \alpha + 1$?

2. Cubic Equations

- 1. Prove that the discriminant of a real cubic is positive if all the roots are real, and negative if not.
- 2. Determine the Galois groups of the following polynomials.

(a)
$$x^3 - 2$$
 (b) $x^3 + 27x - 4$ (c) $x^3 + x + 1$ (d) $x^3 + 3x + 14$

(e)
$$x^3 - 3x^2 + 1$$
 (f) $x^3 - 21x + 7$ (g) $x^3 + x^2 - 2x - 1$

- **(h)** $x^3 + x^2 2x + 1$
- 3. Let f be an irreducible cubic polynomial over F, and let δ be the square root of the discriminant of f. Prove that f remains irreducible over the field $F(\delta)$.
- **4.** Let α be a complex root of the polynomial $x^3 + x + 1$ over \mathbb{Q} , and let K be a splitting field of this polynomial over \mathbb{Q} .
 - (a) Is $\sqrt{-3}$ in the field $\mathbb{Q}(\alpha)$? Is it in K?
 - **(b)** Prove that the field $\mathbb{Q}(\alpha)$ has no automorphism except the identity.
- *5. Prove Proposition (2.16) directly for a cubic of the form (2.3), by determining the formula which expresses α_2 in terms of α_1 , δ , p, q explicitly.
 - 6. Let $f \in \mathbb{Q}[x]$ be an irreducible cubic polynomial which has exactly one real root, and let K be its splitting field over \mathbb{Q} . Prove that $[K:\mathbb{Q}] = 6$.
 - 7. When does the polynomial $x^3 + px + q$ have a multiple root?
 - 8. Determine the coefficients p, q which are obtained from the general cubic (2.1) by the substitution (2.2).
- **9.** Prove that the discriminant of the cubic $x^3 + px + q$ is $-4p^3 27q^2$.

3. Symmetric Functions

- 1. Derive the expression (3.10) for the discriminant of a cubic by the method of undetermined coefficients.
- **2.** Let f(u) be a symmetric polynomial of degree d in u_1, \ldots, u_n , and let $f^0(u_1, \ldots, u_{n-1}) = f(u_1, \ldots, u_{n-1}, 0)$. Say that $f^0(u) = g(s^0)$, where s_i^0 are the elementary symmetric functions in u_1, \ldots, u_{n-1} . Prove that if n > d, then f(u) = g(s).
- 3. Compute the discriminant of a quintic polynomial of the form $x^5 + ax + b$.
- **4.** With each of the following polynomials, determine whether or not it is a symmetric function, and if so, write it in terms of the elementary symmetric functions.
 - (a) $u_1^2u_2 + u_2^2u_1$ (n = 2)
 - **(b)** $u_1^2u_2 + u_2^2u_3 + u_3^2u_1$ (n = 3)
 - (c) $(u_1 + u_2)(u_2 + u_3)(u_1 + u_3)$ (n = 3)
 - (d) $u_1^3 u_2 + u_2^3 u_3 + u_3^3 u_1 u_1 u_2^3 u_2 u_3^3 u_3 u_1^3$ (n = 3)
 - (e) $u_1^3 + u_2^3 + \cdots + u_n^3$
- 5. Find two natural bases for the ring of symmetric functions, as free module over the ring R.